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Analytic expressions of the dynamic ampli"cation factor and the characteristic response
spectrum are derived for weakly damped beams with various boundary conditions subjected
to point loads moving at constant speeds. These coe$cients are given as functions of the
ratio of the span length to the loads wavelength, and the loads wavelength respectively. They
allow a rapid calculation of the vibration amplitudes induced by a succession of moving
loads on a beam. These results are particularly useful in the context of railway bridges
preliminary design and assessment of the expected maximum vibration levels under
high-speed trains.
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1. INTRODUCTION

The literature dealing with moving loads on bridges is considerable and has been enriched
in the last few decades by the development of high-speed rail networks in continental
Europe and Asia. A comprehensive review of these works is out of the scope of this paper,
and the various references below are just given as non-exhaustive indications for further
reading. Nevertheless, it appears that most of the recent studies focus on numerical
simulations, possibly including the e!ects of train mass inertia, coupling with the train cars
suspension systems, tracks sti!ness, damping and roughness, especially for ballasted tracks,
or rail}wheel contact (see for instance, the recent works [1}6]). Comparatively few studies
concentrate on analytical developments, although the analytical solutions of a beam
traversed by a single point load is well known (see references [7}11] and references therein)
provided that simple assumptions are used for the description of the load, mainly neglecting
its inertia e!ect. Fewer works deal with the possible dynamic ampli"cations induced by
a regular succession of loads, as is the case for railway bridges when the frequency of
succession matches their natural frequencies [12}15]. Note that such analytical
developments can also be performed up to a thorough level for the case of a moving load on
an elastic half-space, with applications to the evaluation of the characteristics of guided
waves induced by trains in the trackbed, ground vibrations in the environment or possible
instabilities [16, 17]. Another major subject of interest has been the consideration of some
randomness in the train speed, loads spacing and/or amplitudes [11, 18, 19], track
roughness [20}22] or track sti!ness characteristics [23]. These latter cases are probably the
most relevant ones when applied to modern railways although the most di$cult to handle
from a theoretical point of view; on the contrary, randomness related to the loads
amplitudes, speed or arrival times, is more likely to occur for highway bridges.
0022-460X/01/470267#22 $35.00/0 ( 2001 Academic Press
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Most studies focus on the assessment of the dynamic de#ection of a beam induced by the
moving loads for application to structural strength design. Practically, this point is seldom
a real concern for prestressed concrete railway bridges since, "rstly, they are primarily
designed for heavy static loads, including the prescribed dead loads and train loads, and
secondly, viscous damping is often rather important (a minimum of about 5% of critical
damping). Steel or composite steel/concrete bridges have much lower damping rates (about
0)5%) but they are also usually sti! enough to withstand dynamic ampli"cations from train
loads. The main concerns for railway engineers are in the evaluation of riding comfort when
trains traverse bridges, running safety, and tracks stability and deformation. Riding comfort
is basically related to the vertical and transverse accelerations experienced inside the train
cars; running safety is ensured at least if a continuous contact can be kept between the
wheels and the rails; rails deformation is a critical point for modern railways where
continuous welded rails are used [24], whereas it is necessary to avoid any possible
decohesion of the ballast whenever it is used. Therefore, vertical accelerations, rotations at
abutments and supports, torsion or warping are the most relevant quantities to focus on.
The usual criteria to be ful"lled for them may be found, for instance, in reference [25]. The
last issue worth mentioning from an engineering point of view is the analysis of fatigue in
operational conditions, namely the repetition in time of such regular loadings at very high
speeds (more than 250 km/h) for each direction on the bridge. Composite bridges may be
particularly sensitive to this phenomenon which needs to be carefully evaluated for the
structure itself as well as its various connections [24}26]. Use of ballasted tracks and
concrete decks has the advantage of signi"cantly enhancing their behaviour [25].

The purpose of the present paper is to propose simple analytical tools for the evaluation
of the transient dynamic ampli"cations induced by successive loads preliminary to any
detailed numerical studies whenever needed. The developments are restricted to bounded
elastic media, and particularly beams, and oriented toward practical engineering
applications for real cases of weakly damped structures. In section 2, we introduce our basic
notations and some general, well-known notions on vibrations of Euler}Bernoulli beams.
These elements are used in section 3 to calculate the time response of such a beam model
subjected to a succession of massless point loads and assess the dynamic magni"cation they
can produce. These preliminary considerations allow us to derive in section 4 a simpli"ed
method for the direct calculation of the expected maximum dynamic de#ection of the beam
under successive loads by considering only few simple parameters related to the bridge and
the train. In section 5, we give some indications on the possible modi"cations of the theory
considering the e!ects of shear deformation and rotatory inertia according to Timoshenko's
beam model. We "nally draw some conclusions and recommendations in section 6.

2. NOTATION AND GENERAL CONSIDERATIONS

The purpose of this section is to introduce the notation used throughout this paper, as
well as to recall brie#y the basic notions on beam vibrations and modal analysis which shall
be applied. We "rst consider the case of the Euler}Bernoulli beam model described by the
following partial di!erential equation:
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where z is the beam de#ection due to planar bending, which depends on the position s along
the beam and on time t, o is the mass of the beam per unit length, D is its bending rigidity,
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assumed constant along the beam, f is the critical damping rate, and x are the externally
applied loads, which depend on the position and time. In the above equation the position
s belongs to the set X"]0, ¸[ where ¸ is the span length of the beam, and t is in the set
[0,#R[. The initial conditions at time t

0
"0 are given by the functions f (s) and g(s):
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Lz

Lt
(s, 0)"g(s) ∀s3XM . (2)

Finally, the boundary conditions are written ∀t*0
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for, respectively, the de#ection, rotation (slope), moment and shear force of the beam at both
supports.

The solution of this boundary value problem is projected on the eigenmodes basis,
hereafter denoted by Mu

j
(s)N

j*1, as
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where Mq
j
(t)Nj*1 are the generalized co-ordinates of the beam de#ection. In the following,

the eigenmodes are normalized with respect to the mass, that is, they satisfy the
orthogonality condition

1

¸ PX

u
j
(s)u

k
(s) ds"d

jk
, (5)

where d is the Kronecker symbol. The associated eigenvalues are denoted by Ma2
j
Nj*1 and

correspond to the eigenfrequencies Mu
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Nj*1 such that
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with c2"D/o. The generalized co-ordinates are solutions of the ordinary di!erential
equations:
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for all integers j*1, M"o¸ being the total mass of the beam. The generalized loads are
denoted by x

j
(t)":X x(s, t)u

j
(s) ds. These equations can be generalized further by assuming

a di!erent critical damping rate f
j
for each eigenfrequency, which is done in the rest of the

paper. The damped eigenfrequencies are denoted by Mu
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.



Figure 1. Layout of N successive point loads passing by a beam structure at constant speed v.

270 E. SAVIN
Four standard cases of boundary conditions will be considered in this study: the "rst one
is a simply supported (hinged}hinged) beam, the second one is a clamped}clamped beam,
the third one is a clamped}hinged beam, and the last one a cantilever (clamped}free) beam.
The analytical expressions for the corresponding normalized eigenmodes can be found in
any textbook on structural dynamics (see reference [27] for instance). Although limited to
beams with a single degree of freedom for bending (the de#ection), the analysis developed in
this paper can be extended to vector-valued eigenmodes for multi-degree-of-freedom
bounded media. Thus, provided analytical expressions are known for the eigenmodes, the
developments presented below can be carried out for such structures as well (see reference
[28] for the case of plates).

3. RESPONSE TO MOVING LOADS

3.1. DEFINITION OF THE MOVING LOADS

The externally applied loads consist in a succession of N concentrated point loads acting
transversally on the beam and moving at a constant speed v (see Figure 1). Their weights are
denoted by P

n
and their relative distances with respect to the "rst load by d

n
, for

n"1, 2,2 , N with the convention that d
1
"0. Therefore, x (s, t) can be expressed by
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where 1
I
(t)"1 if t3I, 1

I
(t)"0 if t N I, and d is the Dirac measure. Introducing the circular

frequencies u6
j
"a

j
(v/¸) corresponding to a single load travelling across the beam, the

generalized loads are given by
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These expressions can now be used to solve equations (6) with the principle of
superposition, assuming the beam is at rest at the initial time t

0
"0 when the "rst load

P
1

reaches it, that is f (s)"g(s)"0 for s3XM .
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3.2. DYNAMIC DEFLECTION FOR A SIMPLY SUPPORTED BEAM

The beam de#ection induced by each load can be decomposed into two steps: the "rst one
corresponds to the forced vibrations due to the load P

n
considered, for d

n
/v)t)(d

n
#¸)/v,

and the second one corresponds to the free vibrations after the load P
n
has left the beam, for

t*(d
n
#¸)/v. Analytical expressions can be obtained directly from equation (6) by

integration; however, they are reproduced here only for the case of a simply supported beam
for illustration purposes. Expressions for the other boundary conditions considered in this
study may be found, for instance, in references [13, 29]. Introducing the factor i

j
"u6

j
/u

j
,

sometimes called a speed parameter in the literature (see for instance reference [15]), the
generalized co-ordinates for the de#ection of a simply supported beam due to the load
P
n

are denoted by q(n)
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(t) for j*1 and are given by
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Note that these terms do not correspond to purely forced vibrations as they also include free
vibrations induced by the impact of the loads. However, they will be called &&forced
vibrations'' in the rest of the paper since they arise for the time intervals when the loads
traverse the beam. For weakly damped structures, equation (9) can be simpli"ed by
neglecting the terms of orders greater than 1 in f

j
. This leads to
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for i
j
"1. The overall generalized co-ordinates for the beam forced de#ection induced by

the whole train of loads are
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where the &&initial conditions'' for free vibrations after the load P
n
has left the beam are
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The case i
j
"1 is examined in section 4.1. Finally, the overall generalized co-ordinates for

the free vibrations after the loads have left the beam one by one, are
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where H(t) is the Heaviside step function, H(t)"1 if t*0 and H(t)"0 if t(0. To conclude
this subsection, it can be noted that an alternative representation of the solution to the
single load problem for an undamped simply supported beam has been given by Steele [10]
in terms of an in"nite series of in"nite integrals. It is claimed that its convergence is
improved for a high-speed parameter i

1
as compared to the classical Fourier series

representation developed here. More recently, Pesterev and Bergman [30] have derived an
alternative series representation, exhibiting explicitly the quasi-static contribution to the
response and converging more rapidly. The latter property can be helpful for the evaluation
of spatial derivatives of the de#ection, in order to calculate the distributed e!orts in the
beam.
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3.3. DYNAMIC AMPLIFICATION FACTORS

3.3.1. Forced vibrations of a simply supported beam

The forced vibrations of the beam, characterized by the generalized coordinates q(n)
j1

(t) for
each load P

n
and time d

n
/v)t)(d

n
#¸)/v, are seen from equation (9) or (10) to be

a combination of vibrations at the circular frequencies u6
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for a single load traversing the

beam, and u
Dj

for the damped eigenfrequencies of the beam. They have been extensively
studied in the literature [7, 12, 25, 31, 32] and constitute the basis of the de"nition of the
dynamic ampli"cation factors in some standard bridge design codes, such as the Eurocode
or the UIC (International Union of Railways) norms. These ampli"cation factors are
usually given as functions of i

1
when the analysis is restricted to the fundamental

eigenmode of the beam, that is when expansion (4) is truncated at j"1.
We deduce from expression (9) that an apparent resonance occurs when i2
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at least for a whole period, but in this case the vibrations at the circular frequency u6
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for a simply supported beam (see references [12, 31]). These values for each generalized
co-ordinate have to be compared with the static de#ection of such a beam due to a single
load P at a distance l from either support:
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Furthermore, the e!ects of the N loads on forced vibrations do not cumulate since the
action of each load is limited to time intervals of length ¸/v which do not overlap except for
few successive loads. Indeed, for typical span lengths and trains, only 2 or 3 loads would be
on the bridge at the same time; from a conservative point of view, the maximum
ampli"cations outlined above may be multiplied by the maximum possible number of
loads on the bridge, which is limited to only few of them. This means that, as regards
forced vibrations, the maximum dynamic de#ection can be evaluated by multiplying the
maximum static de#ection observed under the train layout considered, by a dynamic
ampli"cation factor U(i

1
) possibly varying with speed (as in references [12, 33]) but never

greater than about 1)7 for a simply supported beam. Qualitatively, similar conclusions
can be drawn for other types of boundary conditions although this last maximum
ampli"cation factor is generally slightly smaller (see for instance, the results obtained in
references [13, 29]). U(i

1
) is plotted in Figure 2 for the four types of boundary conditions

considered here, and according to the approximate formula proposed in reference [33] for
comparison.



Figure 2. Dynamic ampli"cation factor U (i
1
) as proposed in reference [33] (===) and for a simply supported

beam (***), clamped}clamped beam (} } } } }), clamped}hinged beam (} ) } ) } ) } ) and cantilever beam
(====).
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It is also worth noting at this stage that, for typical engineering structures, such as railway
bridges, the span lengths are of the order of several tens of meters, and the fundamental
frequency is about several Hertz. Thus, the resonance frequency for a single load travelling
across the bridge corresponds to a train speed of about several hundred meters per second
(or of the order of 1000 km/h), which is unrealistic for the actual vehicles.

3.3.2. Free vibrations

The free vibrations of the beam, characterized by the generalized co-ordinates q (n)
j2

(t) for
each load P

n
and time t*(d

n
#¸)/v, are vibrations at the damped eigenfrequencies of the

beam only. From equation (13) or (14) for weak damping, it is seen that each q(n)
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depends on i
j
and f
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is an additional phase term which is independent of the current load characteristic P
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as well. Therefore, extending the above analysis to all kinds of boundary conditions
considered in this study, the generalized co-ordinates of the beam free vibrations have the
form
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where R
j
depends on the type of boundary conditions. The beam free motion is thus given

by the product of an ampli"cation factor which depends on i
j
(and damping) only, and of

damped free vibrations at the eigenfrequencies of the beam whose amplitudes and phases
are fully characterized by the speed and layout of the moving loads. These terms are studied
in detail in the next section, introducing the notions of dynamic ampli"cation coe$cient,
train characteristic response spectrum and a new parameter called the loads wavelength.
Note that here, contrary to the case of forced vibrations, the e!ects of all loads
cumulate*however, with di!erent phases*since they arise on overlapping time intervals of
in"nite lengths, and may thus induce non-negligible de#ections as compared to the ones due
to the forced vibrations for weakly damped structures. These residual free vibrations [12]
for successive loads have often been disregarded in the literature.

4. ASSESSMENT OF MAXIMUM VIBRATION LEVELS

Equation (18) suggests that the leading e!ect of the loads on the vibrations of the beam is
their frequency of succession, that is the ratio of their speed to a &&typical'' distance between
them. In fact, it will be shown that this e!ect is more likely to induce resonance of the beam
than the forced circular frequency u6

j
attached to a single load, for the reasons mentioned

above in sections 3.3.1 and 3.3.2. For a meaningful analysis of this e!ect on the generalized
co-ordinates for free vibrations of the beam, it is suggested that a new parameter be
introduced, the so-called wavelength of the loads, de"ned by j"2n v/u. Its values at the
eigenfrequencies of the beam are denoted by j

j
"2n v/u

j
. Another interesting point is to

introduce the well-known simpli"ed formula for the fundamental frequency of a beam in
bending which is [12]
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where g"9)81 m/s2 is the acceleration due to gravity and z
M

is the beam maximum static
de#ection due to its own weight. Equation (19) is a posteriori valid for any kind of
boundary conditions (the coe$cient for a cantilever beam is slightly greater than 0)18 but
this value is conservative as it is used hereafter). Since i

j
"(a

j
/2n) (j
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/¸), q
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(t) can now be
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rewritten as
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(t; j, f ) is a train characteristic response function associated with the free vibrations of the

beam de"ned by
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. These last two functions are studied in detail in the following subsections.

Finally, z
1

is the beam maximum static de#ection due to uniform distributed load of 1, that
is z

1
"z

M
/og .

4.1. DYNAMIC AMPLIFICATION COEFFICIENT

The dynamic ampli"cation coe$cient r
1

de"ned above is plotted in Figure 3 for di!erent
values of damping and the four types of boundary conditions considered in this study. r

2
is

also plotted in Figure 4 (note the di!erence of scales as compared to Figure 3). It is seen that,
for weakly damped structures, these coe$cients are almost independent of the critical
damping rate f

j
. Thus, the dependence on f

j
will be ignored for them in the rest of the paper.

They are also rapidly decreasing when j increases; thus, a truncation at the order j"1 is
fully justi"ed.

Following these conclusions, we introduce a slightly di!erent dynamic ampli"cation
coe$cient denoted by a(¸/j), independent of f and used hereafter to assess the maximum
de#ection due to free vibrations. It is de"ned by

aA
¸

jB"r
1 A2n

¸

j
, 0B]max

s3X1
u
1
(s). (23)

Figure 5 displays a for the four cases of boundary conditions considered in this paper. Its
analytical expression for a simply supported beam is for instance,

a (u)"K
2 cos nu

1!4u2 K
for uO1

2
and a (1

2
)"n/2 (which is not the maximum). The formulas for other boundary

conditions have been derived in reference [13]. They show that the shorter the span length
is, the larger the dynamic ampli"cation coe$cients are. Furthermore, the ampli"cation
cancels out*or almost cancels out*for some particular ratios of the span length to the
wavelength, whereas it has local maxima for some other ratios. In the case of a simply
supported beam, these ratios are of the form (2m!1)/2 and Km (but never exactly),



Figure 3. Dynamic ampli"cation coe$cient r
1
(2n¸/j, f) for a simply supported beam, clamped}clamped beam,

clamped}hinged beam and cantilever beam, and various damping rates f (=== ), f"0)5%;====, f"1%;
+ ' + ' + ' +, f"2%; ****, f"3%; } } } } }, f"4%; } )} ) } ) , f"5%).
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respectively, where m'1 is an integer. For instance, for a train with a regular distance
d between its successive bogies, dynamic e!ects on bridges are dramatically reduced by
considering span lengths of order ¸K1)5 d. These observations are well known by railway
engineers and were made in other previous analytical studies [12, 13, 15].

4.2. TRAIN RESPONSE SPECTRUM

The response spectrum of an externally applied load x(t) is the maximum response with
time of a single oscillator subjected to this load [27], namely,

p(u, f)"
1

Mu
D

max
t*0 K P

t

0

sinu
D
(t!q) e~fu (t!q)x(q) dq K ,

where u is the circular eigenfrequency of the oscillator, f is its critical damping rate and

u
D
"u J1!f2 . The response spectrum of the load for f"0 is usually close to the

amplitude of its Laplace transform; however, it remains a one-to-one transform which does
not permit the recovery of the load from the knowledge of its spectrum. The so-called
primary response spectrum is the maximum response of the single oscillator for the
duration of the loading, whereas the secondary spectrum is the maximum response after its
end (damped free vibrations). Clearly, from the above analysis the secondary spectrum
dominates for successive moving loads and needs to be evaluated.



Figure 4. Dynamic ampli"cation coe$cient r
2
(2n¸/j, f ) for a simply supported beam, clamped}clamped beam,

clamped}hinged beam and cantilever beam, and various damping rates f (=== , f"0)5%;====, f"1%;
+ ' + ' + ' +, f"2%; ****, f"3%; } } } } }, f"4%; } )} ) } ) } ) , f"5%).

Figure 5. Dynamic ampli"cation coe$cient a (¸/j) for a simply supported beam (===), clamped}clamped
beam (==== ), clamped}hinged beam (*** ) and cantilever beam (} } } } }).

278 E. SAVIN



VIBRATION OF BEAMS UNDER MOVING LOADS 279
Here we de"ne the secondary train response spectrum as the maximum of R
j
(t; j, f)

with time and the number of loads, to account for the di!erence in phase between
them

p
j
(j, f )" max

1)N
s
)N

max
t*0

1

(0)18n)2

1

j K
Ns

+
n/1

P
n
HAuj

t!2n
d
n

jB
]sin J1!f2 Auj

t!2n
d
n

j
#/M

jB e~f(u
j
t!2n d

n
/j) K . (24)

This series is still quite cumbersome and (very) costly to evaluate numerically. However, the
response spectrum as it is de"ned above is well approximated by p (j, f) where

p (j, f )"
1

(0)18n)2
max

1)N
s
)N

1

j K
Ns

+
n/1

P
n
expC2nA!f#i J1!f2B

d
n
jD K (25)

with i"J!1. The series in the above expression is nothing but the Laplace transform of
the generalized loads x

j
(t) evaluated at the poles p

j
"!f

j
u

j
#iu

Dj
of sub-critically

damped single oscillators with circular eigenfrequencies u
j
and critical damping rates f

j
.

This formula has the advantage of being independent from the geometrical and mechanical
characteristics of the beam, apart from its critical damping ratio, although it is a relevant
estimation of its true response spectrum. That is why from now on we will choose it to de"ne
the train characteristic response spectrum p(j, f ) used to assess the maximum de#ection of
the beam under moving loads. Figure 6 displays this response spectrum for the example of
a French TGV-A train whose layout is given in reference [25]. A &&typical'' distance between
the loads is dK19m (to be compared with the constant length of the cars d"18)7 m which
is di!erent from the length of the power cars) and maximum ampli"cations are observed for
j"d and d/2. This observation can be generalized to other actual train layouts. The
corresponding loads speeds are v"d]f

1
and (d/2)]f

1
, where f

1
is the fundamental

eigenfrequency of the beam, and are often called &&critical'' speeds. However, the beam
response at these speeds remains always bounded, whereas true critical speeds would rather
correspond to the limits of instability for the steady state response of in"nite or semi-in"nite
systems (see for instance references [10, 16, 17, 23]). In agreement with Adams [14], we note
that they can be much smaller than the speed corresponding to i

1
"1 for which we have

v"2¸]f
1
.

To get further insight on the response spectrum, let us consider the case where
d
n
"(n!1)d and P

n
"P (d and P are constant), that is a succession of regularly spaced

and identical loads, and f"0. Then when j"d/m, where m is a positive integer, the
train spectrum is p"(1/(0)18n)2) (mNP/d). Thus, it is linear with respect to the number
of loads and maximum for a frequency of succession of these loads which matches the
fundamental frequency of the bridge or its fractions; of course, this linear dependence
for f"0 is increasingly damped out when f increases. The critical speeds are in this
case v

m
"(d/m)]f

1
, and theoretically identical results hold for all eigenfrequencies of

the beam. If j"2d then the response spectrum is simply proportional to a single load
p"(1/(0)18n)2) (P/2d). These observations are con"rmed by Figure 7 where the response
spectrum for the train used by Yang et al. [15] and having a more regular arrangement
of loads has been displayed. Its characteristics are as follows: d

2n
"nd#(n!1)e

and d
2n`1

"n (d#e), with N"10 (corresponding to 5 cars), d"18m, e"6 m, and
P
n
"22]103kg.



Figure 6. TGV-A characteristic response spectrum p (j, f) for various critical damping rates of the beam (===,
f"0)5%; ====, f"1%; + ' + ' + ' +, f"2%; ****, f"3%; } } } } }, f"4%; } ) } ) } )} ) , f"5%).

Figure 7. Response spectrum p (j, f ) for the train considered by Yang et al. [15] and various critical damping
rates of the beam (===, f"0)5%; ===== , f"1%; + ' + ' + ' +, f"2%; ****, f"3%; } } } } },
f"4%; } ) } ) } ) } , f"5%).
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4.3. SIMPLIFIED CALCULATION OF THE MAXIMUM RESPONSE OF THE BEAM

4.3.1. Proposed formulas

From the previous considerations and putting together equation (4) up to the "rst order
and equation (20), the maximum dynamic de#ection of a beam under successive moving
loads is

z
max

KU A
¸

j
1
B]z

stat
#aA

¸

j
1
B]p(j

1
, f)]z

1
, (26)

where z
stat

is the maximum static de#ection of the beam under the arrangement of loads
considered, z

1
is its maximum static de#ection under a uniform unit load, ¸ is the span

length, f is the critical damping rate, j
1

is the wavelength of the loads de"ned as the ratio of
their speed to the fundamental frequency of the beam; "nally, U)1)7 is the dynamic
ampli"cation factor for the forced vibrations de"ned in the usual design codes and such that

lim
jP0

UA
¸

jB"1.

The maximum vertical acceleration of the beam can be evaluated from the above using the
pseudo-acceleration spectrum associated with a given train characteristic response
spectrum p (j, f):

c
max

Ka A
¸

j
1
B]u2

1
p (j

1
, f)]z

1
. (27)

Note that from the formulas de"ning a (¸/j) and p(j, f), it can be seen that

lim
jP0

aA
¸

jB p (j, f )"0

as expected: dynamic ampli"cation vanishes when the train speed is zero.
Other quantities of interest for engineering applications, such as the ones mentioned in

the introduction, can be derived by the same procedure using essentially equation (4). Note,
however, that in doing so, it must be kept in mind that the convergence of the series
deteriorates by successive spatial derivatives and then higher order terms shall be added.
For instance, estimates of the maximum rotations at the hinged supports may be obtained
from the above equations scaled by the span length ¸ with a modi"ed accordingly
(maximum of u@

1
(s) for s"0 or ¸ instead of the maximum of u

1
(s)). Besides, torsional

motions are described by similar di!erential equations and mode shapes (depending on the
boundary conditions) while the loads are multiplied by their excentricity with respect to the
torsion centre of the beam.

4.3.2. Numerical example

We consider the case of a simply supported beam whose characteristics are chosen in
accordance with the example examined by Yang et al. [15], and focus on the time history of
the de#ection at mid-span for di!erent speeds of the loads. The plots are obtained using the
exact analytical formulas given in section 3.2 and the summation of "ve eigenmodes. The
span length is ¸"20m, its density is o"34)088 kg/m and its bending rigidity is
D"1)12]1011Nm2, such that its fundamental eigenfrequency is f

1
"7)1Hz. The static

de#ection under a uniform unit load of 100 kN/m is z
1
K1)9 mm. The critical damping rate

is chosen as f"2)5%. The loading train is the one described in section 4.2 whose spectrum



Figure 8. Time history of the de#ection at mid-span of a simply supported beam at various critical speeds of the
train. Train and beam characteristics are taken from reference [15].
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is given in Figure 7. From the examination of this spectrum, it is seen that possible
maximum ampli"cations can occur at j

1
K23, 8 and 6 m corresponding to train speeds

v"589)7, 205)1 and v"153)8 km/h respectively. Time history curves of the mid-span
de#ection for v"153)8 and 589)7 km/h are plotted in Figure 8, together with the curves for
v"615)5 km/h, corresponding to i

1
"0)6, and v"10 km/h, corresponding to the

so-called crawling (quasi-static) de#ection. On the other hand, Figure 5 gives the values
¸/j

1
"m!1

2
where dynamic ampli"cations can theoretically be cancelled. They

correspond to the cancellation speeds v"341)9 km/h for m"2, v"205)1 km/h for m"3
(which is a critical speed as well), v"146)5 km/h for m"4 and v"114 km/h for m"5.
Figure 9 displays the time history de#ection at mid-span for these four speeds. It is seen that
dynamic ampli"cations are e!ectively cancelled out since the maximum de#ections
observed are comparable to the maximum crawling de#ection plotted in Figure 8. For
instance, if m"2 then i

1
"1

3
and UK1)45 whereas the observed ampli"cation is

z
max

K1)3]z
stat

. Regarding the critical speeds, for instance, v"589)7 km/h, we have
UK1)7, whereas aK0)9 and pK140 kN/m. Thus, z

max
K3)2 mm from equation (26),

compared to z
max

K2)7 mm from Figure 8. We also observe that at v"153)8 km/h, the
dynamic ampli"cation coe$cient a is negligible and UK1)15, so that dynamic
ampli"cations are signi"cantly reduced.

4.3.3. Comparison with experiments

The proposed formula for the expected maximum acceleration is compared with
measured accelerations on an existing railway bridge in France (data provided by the



Figure 9. Time history of the de#ection at mid-span of a simply supported beam at various cancellation speeds
of the train. Train and beam characteristics are taken from reference [15].
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French National Railways, SNCF). This simply supported structure is labelled OA71)18
and its useful characteristics are as follows: its span length is ¸"17)4 m, its fundamental
eigenfrequency is f

1
"4)5 Hz, its critical damping rate is estimated at f

1
"4%, and its mass

per unit length is o"16)3]103 kg/m. The bridge was traversed by a TGV-A type
high-speed train at the speed v"260 km/h and the maximum acceleration experienced at
mid-span was c

exp
"3)5 m/s2.

For these data, the loading wavelength j
1

is j
1
"16 m leading to aK0)5 for the dynamic

ampli"cation coe$cient and p
TGV

K95 kN/m for the train spectrum. Applying equation
(27), the expected maximum acceleration is found to be c

max
K3)8 m/s2 which compares

reasonably well with measurements.
We conclude from these examples that the proposed formulas for the assessment of

maximum vibration levels give accurate results, although slightly conservative with respect
to the numerical simulations based on the exact analytical expressions, and the measured
acceleration for the particular experiment described previously. The discrepancies can easily
be explained by invoking the simplifying assumptions introduced as and when required for
the derivation of equation (26).

5. INFLUENCE OF SHEAR DEFORMATION AND ROTATORY INERTIA

In this section, we brie#y review the in#uence of transverse shear deformation and
rotatory inertia on the results obtained so far, using the more exact Timoshenko beam
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model. The developments below are intended to give some indication on how the formulas
of section 4.3 may be tentatively modi"ed or not in accordance with this alternative model.

Euler}Bernoulli beam models are valid only if the slenderness ratio r/¸ is small, where r is
the radius of gyration. These models are also often inaccurate for beams with a constant
cross-section S and mass per unit length o. A Timoshenko beam theory taking into account
shear deformations and rotatory inertia is more adapted to such cases and when the
slenderness ratio is not too small. Introducing the bending angle h (s, t) along the beam, the
basic coupled partial di!erential equations considered for h and z are

x (s, t)!o
L2z

Lt2
(s, t)"

L
Ls Ck@GSAh(s, t)!

Lz

Ls
(s, t)BD!2fJoD

L
Lt

L2z

Ls2
(s, t),

oI

S

L2h
Lt2

(s, t)"k@GSA
Lz

Ls
(s, t)!h (s, t)B#D

L2h
Ls2

(s, t),

(28)

where o is the mass per unit length of the beam, S is its cross-section area and I is its bending
inertia, D"EI is the bending rigidity and E is Young's modulus; G"E/2(1#l) is the
shear modulus, l the Poisson coe$cient, and k@ is the usual shear reduction coe$cient
depending on l and the cross-section geometry. The same boundary conditions and initial
conditions as in section 2 are applied. We also consider that the beam is at rest at t"0
( f (s)"g(s)"0 for s3XM ).

The conservative spectral problem for the beam de#ection is given by the equation

d4u

ds4
(s)#u2A

1

c2
p

#

1

c2
s
B

d2u

ds2
(s)!

u2

c2 A1!
u2c2

c2
p
c2
s
B u(s)"0, s3X (29)

and boundary condition (3), with the following parameters:
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o
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S
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s
"
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o
.

The eigenmodes have expressions of the form

u
j
(s)"sinAa`j

s

¸B#A
j
sinhAa~j

s

¸B#B
j
cosAa`j

s

¸B#C
j
coshAa~j

s

¸B (30)

up to a normalization coe$cient, and the eigenvalues are given by
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provided that u$

j
(c

s
/r"u

c
.

The forced de#ection of a simply supported Timoshenko beam excited by a single moving
load is studied for instance in reference [34]. In this case, a

j
"jn and the two sets of circular

eigenfrequencies are

u$2
j

"c$2

j
u2

j
"

u2
j

2t2
j
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c2
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c2
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1
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c2
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1

t2
j
BD

2
!

4c2
s

c2
p
D (32)

with t
j
"a

j
r/¸ (Rayleigh's coe$cient). Mu

j
Nj*1 are the circular eigenfrequencies for the

Euler}Bernoulli beam model, which is recovered when u
c
P#R, so that u$

j
Pu

j
. The

normalized eigenmodes for the beam de#ection Mu
j
(s)Nj*1 and bending angle Ms

j
(s)Nj*1



Figure 10. Coe$cients 1/k$

j
c$2
j

for a circular (*** ) and a rectangular (=== ) Timoshenko beam with
l"0)2.
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are given by
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j

sinAaj
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j
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(33)

where k$

j
"1#t2

j
(1!(c2

p
/c2

s
)c$2

j
t2
j
)2; they satisfy the orthogonality condition

1

¸ PX

u
j
(s)u

k
(s) ds#
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¸ PX

s
j
(s)s

k
(s) ds"d

jk
.

Then it can be shown that the generalized co-ordinates satisfy the ordinary di!erential
equations:

qK
j
(t)#2f$

j
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j
qR
j
(t)#u$2

j
q
j
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j
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Mk$
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j
(0)"0, qR
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(0)"0

(34)

with f$

j
"f

j
/k$

j
c$

j
. Therefore, all the results obtained so far are formally unchanged and

the maximum response of the beam can be evaluated using equation (26) for the same
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structure modellized by an Euler}Bernoulli beam, corrected by a factor 1/k~
1

c~2
1

*1 (for
the lowest eigenfrequency):

z
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1
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1

c~2
1
CUA

¸
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1
B]z
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#aA

¸

j
1
B]p(j

1
, f)]z

1D . (35)

In Figure 10, we have plotted the coe$cients 1/k$

j
c$2
j

as functions of t
j

for a Poisson
coe$cient l"0)2 and circular and rectangular cross-sections, for which [35]

k@"
6(1#l)
7#6l

, circular cross-section,

k@"
10(1#l)
12#11l

, rectangular cross-section.

Similar analyses can be performed for the in#uence of an axial load or elastic foundation,
and comparable conclusions are reached.

6. CONCLUSIONS

In this paper, the exact analytical solution for an Euler}Bernoulli beam traversed by
a succession of massless point loads has been given. The dynamic ampli"cations
corresponding to the forced response and free vibrations were both analyzed in detail. In
particular, free vibrations were shown to be generally non-negligible as compared to the
forced ones, if the number of loads is of the order of several tens as is the case in railway
applications. Based on these results, simple formulas involving a minimum of soundly
parameters were derived for the calculation of the maximum expected dynamic
ampli"cations induced by the loads. They show that for some particular span lengths
related to the wavelength of the loads, these e!ects can be dramatically reduced and even
theoretically cancelled. Therefore, they may be especially useful in the context of
preliminary design of railway structures modelled by beams. Finally, tentative formulas
were also given to account for transverse shear deformations and rotatory inertia according
to the Timoshenko beam model.

The simpli"ed formulas for beams obtained in this work cannot be applied directly to
some particular structures such as skewed or cable-stayed bridges for instance. In these
latter cases, three-dimensional models are needed and can only be solved numerically.
However, the results obtained so far could easily be extended, in our opinion, to plates since
analytical expressions of the eigenmodes are available for most cases of boundary
conditions and geometrical layout used in practical applications. We also note that in the
evaluation of the dynamic ampli"cation e!ects, structural strength may be less a concern for
railway bridges than riding comfort and safety standards for the tracks in operational
conditions. The formulas given in this paper are adapted to the evaluation of the maximum
deformations related to the criteria applicable for accelerations in the train cars or
alignment of the tracks.
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